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The governing relationships of theories of flow type depend in a substantial manner on 
the selection of two functions, the loading function and the hardening function, whose de- 
tailed construction is not elucidated. The allowable freedom in giving these functions per- 
mits the assumption of sufficiently diverse loading surface shapes of both regular and sin- 
gular type. 

Results of experimental investigations available at this time do not reflect suffi- 
ciently completely the viewpoint of classical representations in the theory of a hardening 
plastic body. For instance, loadings with a constant stress intensity result in a signifi- 
cant growth in the plastic strain [i], indicating an inconsistency in the classical flow 
law based on an isotropically broadening Mises flow surface. 

An experimentally based modification of the theory of plastic flow is proposed in this 
paper, in which a macroscopic shear strain mechanism, which is a particular case of a me- 
chanical model of a material [2] and relies on experimental observations beyond the Luders 
lines, is taken as the basis for constructing the governing relationships. Such an approach 
does not use the concept of a loading surface to construct the governing relationships, but 
allows interpretation in this terminology. The loading surface is singular in the hardening 
stage, and comprised of piecewise-smooth sections of surfaces of constant principal tangen- 
tial stresses. The appearance of plastic strain is associated with the Tresk--Saint-Venant 
plasticity condition, and hardening is developed as follows: the loading point in stress 
space displaces piecewise-smooth sections of the surfaces of constant principal tangential 
stresses parallel to themselves by withdrawing them from the origin. 

It should be noted that the proposed modification of flow theory can be obtained for- 
mally from the assumption of orthotropy of the plastic state in the form [3] for a definite 
selection of the orthotropy coefficients [4]. 

i. During material loading, let a homogeneous stress-strain state be achieved. We 
denote the principal normal stresses at the time of plastic strain occurrence by a i (i = I, 
2, 3), where we agree to number the principal axes so that 

~i ~ o3 ~ 08. (1. i) 

We introduce the following notation for the principal tangential stresses 

T = ( o l - -  ~3)/2, T12 = (o1--~2)72~ T~3 = ( ~ - -  ~ ) 2 ,  

then it follows from (i.I) that T > 0, T12 ~0, T23 ~0. 

Later the strains are considered small and are represented in the form of the sum of 
elastic and plastic components. The plastic components of the principal elongations will be 
denoted by e i (i = i, 2, 3) and the principal plastic shear by y = el -- e3. 

Let us also take the condition of plastic incompressibility and Hooke's law between the 
increment of the elastic strain component and the stress increment. It is considered that 
the elastic properties of the material do not change during the plastic deformation. 

Let ~s be the yield point under pure torsion, when 2T12 = 2T23 = T. 

The cases T > Ts, T12 and T23 < ~s will be called the state of incomplete plasticity, 
and when T and T~2 > <s, T23 < Ts (or T and T2~ > T s, T12 < Ts) the state of complete plas- 
ticity. 

Mechanical Model of a Material. We will consider the material in the plastic state to 
be weakened only in the directions of the slip system (the directions of principal tangential 
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stress action in which the limit T s is exceeded) and the plastic strain increment is a se- 
quence of simple shears originating under the action of the growth of the intrinsic tangen- 
tial stresses in these directions. The dependence of the principal plastic shear yo on the 
magnitude of the maximum tangential stress during torsion (Fig. i) is taken as the techni- 

cal specification of the material in each of the slip systems. 

We introduce the plastic hardening modulus Go(T) = AT/Ayo(T). 

For the incomplete plasticity state, the magnitude of simple shear in the direction T 
is determined by the dependence AT ~ = ZT/Go, where A denotes the change in the correspond- 

ing quantity. 

In the principal stress axes we obtain the relationships 

Ae 1 = --Aea = AT/2Go, Ae~ = O, (i. 2) 

which are the associated flow law under the condition T = const since Aei = h(T)(3T/3oi)AT 

(i = i, 2, 3), where h(T) = I/Go(T). 

If the principal stress axes are fixed (quasisimple loading [2]), then (1.2) can be in- 

tegrated 

e 1 = - - e s  = ( l / 2 ) ? o ( T ) ,  e2 = 0.  

In the complete plasticity state, when T and T12 > Ts, T23 < T s, on the basis of the me- 

chanical model of a material it is possible to write 

A ?  ~ ' =  AT, Go, Aye2 = AT12/G1, 

where Ay v, Ay~z are simple shears originating in the direction T and T1z, and GI = Go(TIe). 

Going over to the principal axes of the stress tensor, we obtain the relations 

Ae 1 : AT/2Go ~ ATI~/2G1, Ae~ = --ATI~/2G1, Ae3 : --AT/2Go, ( 1 . 3 )  

which are also represented in the form of a flow law [5]: 

Aei = h(T)(OT/Oai)AT + h~(Ta2)(OT~2/Oa~)ATn (i = t ,  2,  3) ,  

where hi(T12) : I/Go(T12). 

If complete indeterminacy in the selection of the loading surface and the hardening 
function remains in this flow law proposed for singular loading surfaces, then (1.2) and 

(1.3) (the mechanical model of a material) eliminate this indeterminacy. 

For quasisimple loading with AT, ATe2 90, the relations (1.3) can be integrated 

e~ = ( l / 2 ) ? o ( T )  + ( l / 2 ) ? o ( T n ) ,  e. = - - ( l / 2 ) ? o ( r n ) ,  e3 = - - ( l / 2 ) ? o ( T ) .  

As an example, let us consider uniaxial tension oi > O, 02 = ~3 = O, T = T12, T23 = O, 

then el = yo(T), e2 = e3 = --(i/2)yo(T). 

Now we turn to the traditional deviator plane. The projections of the principal 

stresses in this plane are denoted by i, 2, 3 (Fig. 2). 

On the basis of the relationships (1.2) and (1.3), and the material technical specifi- 
cation introduced (see Fig. I), we conclude that hardening develops as follows on the devi- 
ator plane (Fig. 2): The loading point displaces piecewise-linear sections of the Tresk 
surface parallel to themselves by removing them from the origin. This fact can be obtained 
from the hardening scheme [6] applied to the Tresk--Saint-Venant plasticity condition. 

If a thin-walled cylindrical specimen is subjected to loading by a change in the in- 
ternal pressure and axial force in the initial stage of the loading, then complex loading 
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can be realized by adding a torque. If torque loading occurs at the beginning, then the 
subsequent complex loading is realized by adding axial force and a change in internal pres- 
sure. 

For simplicity, we consider a complex loading which is realized in tests on thin-walled 
tubular specimens in the absence of internal pressure. Then the stress state is character- 
ized at each point of the material by the tensor 

0 

in the fixed coordinate system z, r, 8, where the z axis is along the generatrix, r has the 
radial direction, and e the tangential. 

The principal tangential stresses take the values 

T = ( I / 2 ) ~  cos 2~  + ~ sin 2% T ~  = (t/4)% + ( t /2 )T,  T23 = - - ( t / 4 )~z  + (I/2)T~ 

and their increments are 

AT = (t /2)Ao~ cos 2q) + A~: sin 2% ATe2 = (t /4)A% + (I /2)AT,  AT~a = 

- -  (1/4)A% + (t/2)AT,, 

where T = Tz~; tan2 T = 2T/~z; T is the angle between the directions of z and x~ axes. 

We shall consider the assumptions of the mechanical model of the material to be valid 
under complex loading. In this case the directions of the slip system will be rotated dur- 
ing loading. 

For the state of incomplete plasticity, as before, the relationships (1.2) are valid in 
the T direction, and which take the following form in the fixed coordinate system 

Ae= ---- - -  Aeo = (AT/iGo) cos 2% A?~o = (AT~Go) sin 2% Ae~ = 0 ( 1 . 4 )  

and can be written in the form of the flow law 

Ae= : -- Ace = h (T) (OT/'Oo~) AT, A?~o : h (T) (OTiOse) AT, Ae~ = 0, 

where h(T) = I/Go(T). 

Total unloading sets in for AT ~ 0 and loading with AT = 0 is neutral and does not re- 
sult in the growth of plastic deformation. 

In the state of complete plasticity with T and T~2 > r s, Ti~ < rs, the relations (1.3) 
are valid, which take the following form in the z, r, 8 coordinate system 

Aez : (AT/iGo) cos 2q) + (ATIJ4G1)(I -~ cos 2q)), 

Ae o : - - (AT/ iGo)  cos 2q~ + (AT12/4G1)(t - -  cos 2q~), (I. 5) 

Ay~o : (AT~Go q- AT12./iG1) sin 2% Ae r ~ - -  Aez - -  Ae0. 

For the plane state of stress ~r = Trz = ~r~ = 0, and the principal tangential stresses 
T and T12 are written in the form 

T : ( i /2 ) ] / ( (~z  - -  Oo) ~ + 4~ ~, T12 = (o~ + (~0)/4 + (I /2)T,  

then for ~0 the relationships (1.5) are representable in the form of a flow law with a sin- 
gular loading surface in the general case 
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0/'1o 
As:: ~. h (T )  ~-~TGz AT + h 1 (T12) --~z~ ~T12, 

Aeo = h (T) aT OT~,2 AT + h~ (V~2)-~o ATe2, 

0T1~ 
AV~o h ( T ) ~ A T  + h~(T~z)--57-AT~2, 

where h1(T~2) = I/Go(T,2). 

For partial unloading in the direction T,2, i.e., ATe2 ~0, AT > 0, the relationships 
(1.5) go over continuously into (1.4). Total unloading sets in for AT, ATe2 ~0, and the 
singularity at the loading point is formed by the intersection of the surfaces T and T~2 = 
const. 

The condition T = kl in the stress plane Oz, T is a Tresk ellipse (Oz/2k~) 2 + (T/kl) 2 = 
i, while the condition T~2 = k2 is a parabola 2k2oz + 2 = 4k~, where kl and k2 are arbitrary 
constants. 

The curves corresponding to kl = k2 = T s are displayed in Fig. 3 by dashes. 

On the basis of the mechanical model of a material, we conclude that hardening develops 

as follows (Fig. 3) in the plane under consideration: The loading point displaces piecewise- 
smooth sections of the curves of constant principal tangential stresses T and T12 parallel to 
themselves by withdrawing them from the origin. 

For the flow law proposed, loadings with constant value of the maximum tangential stress 
are neutral in the incomplete plasticity state, however, experimental investigations [7] have 
shown that a growth in plastic deformation occurs under such loadings. This fact is success- 
fully described by remaining within the framework of the principal tangential stress concep- 
tion [8], here the mechanical model of a material is taken as basis as is also the assumption 

about orthotropy of the plastic state in the form [3]. 

2. We present a comparison between the results of a computation using the relations 
proposed and test data [i, 9]. 

Test data are presented in [i] for thin tubular specimens of steel 30KhN3A which were 
loaded by internal pressure and a tensile force. For certain specimens the ratio k = o2/oG 
remained constant during the test. A characteristic feature of these tests was the fact that 
different kinds of partial unloadings, when stress growth occurs in some directions and un- 
loading in others were produced at definite stages of the loading for the majority of them. 

The hardening modulus Go(T) was determined from the curve o~(E%) for the specimen 4, 
which was loaded by pure torsion for k = 0.5 (Fig. 4). Results of testing specimen 5 (open 
circles) are also presented in Fig. 4. Up to the point A this specimen was loaded for k = i, 
and then the stress intensity was maintained constant so that Ao 8 > 0, ho z < 0. The results 
of a computation for the second loading stage are superposed by solid lines. 

Data of testing thin-walled cylinders of the aluminum alloy 14S-T4 under complex loading 
conditions are represented in [9]. The specimens were brought into the plastic state by ax- 
ial compression. The complex loading was accomplished by adding the torque TZ@ = T. 

At the time of spinup application the compressive force changed in a different manner so 
that the ratio is doz/dT = const for each of the specimens, but changes substantially from 
specimen to specimen. 
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The results of the tests [9] showed that the material is deformed elastically in the 
plane of action ~ at the initial time of spinup (the initial shear modulus equals the elastic 
modulus). This fact is in agreement with the assumptions of the mechanical model of a ma- 
terial. 

The principal tangential stresses T, T23 take the following form in the complex loading 
case under consideration 

T = (t/2)(1 cos 2q) + �9 sin 2% T2a = ( t /4 )a  + (1/2)T, 

and their increments are 

AT = (I/2)A(~ cos 2q) + A~ sin 2% hT2a = (I/4)A(~ + (1/2)AT, 

where o =--o z > 0; tan 2= 2T/~; ~ is the angle between the directions of the 0 and xl axes. 

A state of complete plasticity is realized in the directions T and T2a at the initial 
instant of complex loading since T = T23 and T12 = 0. 

The governing relations for different kinds of spin-up from the state under considera- 
tion have the form 

I AT 1 AT2a ( l + c o s 2 q ~ ) ,  
Ae 2 Go cos2~ + 4 G 2 

( Ar . (2. l) 

where he =--hzP, AyP = 5yP0, G2 = Go(T2z). 

The elastic constants of the aluminum alloy 14S-T4 are the following: E = 7381.5 kg/ 
mm 2, and a = 2776.85 kg/mm 2. The yield point under uniaxial compression is o s = 17.575 kg/ 
lllIH 2 . 

Results of processing the curves Oz(~z) for each of the specimens showed that cylinders 
loaded for do/dr = m = --1.13 and m = 0.378 had approximately the identical modulus Go(T) on 
the hardening section. For these specimens the plastic hardening modulus was selected from 
the curve TP(~) for data from the experiment with m = --1.13. 

Theoretical curves were constructed for complex loading sections by means of formulas 
(2.1) and are displayed in Figs. 5 and 6 by solid lines. The test data are denoted by open 
circles. Indicated here are the loading programs o(T) and the results of computations by 
other theories. The computational dependences by the Hencke--Nadai--II'yushin deformation the- 
ory are denoted by the dash-dot lines, by flow theory with an isotropically broadening Mise- 
surface by dashes, and by the Batdorff--Budiansky theory by crosses. 

The author is grateful to E. I. Shemyakin and V. M~ Zhigalkin for useful discussions 
during execution of this research. 
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STATIONARY CONFIGURATION OF FIBERS FORMED UNDER 

NONISOTHERMAL CONDITIONS 

A. L. Yarin UDC 532.222 + 681.7.068.4 

One of the important problems of chemical technology is fiber molding. Nevertheless, 
the substantial influence of heat transfer on fiber characteristics has been investigated 
insufficiently. The first step is to obtain stationary solutions. The stationary fiber con- 
figurations are computed numerically in [i]. In this paper analytic solutions of the station- 
ary problem are obtained under the assumption of large activation energy of the viscous flow. 

We shall consider the melt to be shaped to be a Newtonian fluid with viscosity dependent 
on the temperature according to the Arrhenius law. Such high values of the viscosity corre- 
spond to sufficiently low temperatures that flow practically ceases and the material solidi- 
fies. This approximation corresponds best to the behavior of melted glass [2, 3]. 

Let us examine the two most widespread technological processes: i) drawing a fiber from 
a cylindrical glass blank heated to high temperature (Fig. la), and 2) drawing through a 
spinneret hole from a tank containing the melt (Fig. lb). In both cases the fiber being 
drawn cools and solidifies during motion in the air. In the situations under consideration 
we shall consider the material to advance at a constant given velocity Vo. At the end of the 
shaping section, the fiber is incident on a receiving unit (bobbin) giving a certain value of 
the longitudinal velocity. We shall conduct the description within the framework of quasi- 
one-dimensional equations of continuity, momentum [4, 5], and heat propagation by assuming 
the flow to change sufficiently slowly along the fiber: 

~//Ot + O/I~Ox = O, / = =a ~, 

p/(OV/Ot + VOV/Ox) = OP/Ox, P = 3g/OV/Ox, p -= ~0 exp ( U / R T ) ,  ( l )  

V OT ~ 0 OT 

H e r e  t i s  t h e  t i m e ,  x i s  t h e  c o o r d i n a t e  m e a s u r e d  a l o n g  t h e  f i b e r  a x i s ,  f i s  t h e  a r e a  o f  t h e  
f i b e r  s e c t i o n  ( i t  i s  c o n s i d e r e d  t h a t  i t  h a s  a c i r c u l a r  s e c t i o n  o f  r a d i u s  a ) ,  V i s  t h e  m a g n i -  
t u d e  o f  t h e  a x i a l  v e l o c i t y  i n  t h e  f i b e r ,  T i s  t h e  t e m p e r a t u r e ,  p, ~, c ,  X a r e  t h e  d e n s i t y ,  
v i s c o s i t y ,  s p e c i f i c  h e a t ,  and h e a t  c o n d u c t i o n  o f  t h e  m e l t ,  P i s  t h e  m a g n i t u d e  o f  t h e  a x i a l  
f o r c e  i n  t h e  f i b e r  s e c t i o n ,  ~o and U a r e  t h e  p r e e x p o n e n t i a l  f a c t o r  and t h e  a c t i v a t i o n  e n e r g y  
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